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A Note on the Geometry of Lattice Planes

By HERBERT D. DEAS AND CHRISTINE M, HAMILL
The University, Sheffield, England

(Received 2 August 1955 and in revised form 8 March 1957)

This note is an attempt to give a careful restatement of a well known result in lattice geometry,
the proof of the converse part of which does not appear to be so well known.

Let a,, a,,a; be three non-coplanar vectors drawn
from the same origin O. Any vector p, whether drawn
from O or not, is called a lattice vector if it can be
written in the form

P = p1a;+pyay+pya,, (1)

where p,, p,, p; are any integers. Any point P whose
position vector* relative to O is a lattice vector is
called a lattice point; and the set of all such lattice
points is called the space point lattice whose basic
veclors or primitive translation vectors are a,, a,, a,.

The plane through any three non-collinear lattice
points P,, P,, P, is called a lattice plane. If P,, P,, P,
are three non-collinear lattice points then their posi-
tion vectors have the form

P‘l,' = Pi1a1+PiEa2+Pi333’ i = 1’ 2’ 3 > (2)

where each P;; is an integer and further det (Py) =0
(otherwise the three points are collinear). In texts on
vector algebra it is shown that the vector equation of
a plane is

rn=c, (3)

where r is the position vector of any point on the plane,
7 is any vector normal to the plane and ¢ is a constant :
further cnin|~-2 is the position vector of the foot of the
perpendicular from O to the plane. If (3) represents
the lattice plane through P,, P,, P,, then

Pn=P,n=P,n=c, (4)
since Py, P,, P; are points on the plane; and so
(Py—Pg).n = (P;—P;).n = 0. (5)

Thus the point with position vector
P =P+« (P,—P;)+x,(P,—P,), (6)

where «,;, «, are any real numbers, is a point on the
lattice plane, as can be seen by substituting P in (3)
and using (4) and (5). If «,, «, are both integers, then
P is a lattice vector; and since each parameter «;, «,
can take an enumerable infinity of integer values, each

* Subsequently, all position vectors are relative to O unless
another point is specified.
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pair giving rise to a different lattice point, the plane
is seen to contain a double (enumerable) infinity of
lattice points not all of which lie in the same straight
line. However, all the lattice points of the plane may
not be given in this way by (6), as, for example, when
3(P,—P;) is a lattice vector. The problem of enumerat-
ing all the lattice points of a given lattice plane is not
simple; it has been considered by Jaswon & Dove
(1955).
If
Q, = (Py—Py), Q, = (P3—Py), (7)

then Q, A Q, is normal to the plane P,, P,, P, since,
by (5),

(Ql A 02) AT = (011’])02—(02“)01 =0,
Further, it can be seen that

Q, A Q, = V(&b + &by, +£5bs) (8)
where
V, = (a; A a,).a,; 9)

bi = (aj A ak)/Vw isj; k= 17 2’ 37 (10)

and &, &,, &5 are integers determined by (2). The
vectors by, by, b; are called the reciprocal busic vectors
corresponding to the direct basic vectors a,, a,, a;: the
reciprocal basic vectors define a space point lattice
called the reciprocal lattice corresponding to the direct
lattice defined by a,, a,, a;. Hence the lattice plane
through P,, P,, P; is normal to the reciprocal-lattice
vector

§’ = §1b1+5éb2+£éb3- (11)

If ¢y, {o, {3 are relatively prime, i.e. have no com-
mon factors other than +1 and -1, then [ =
£1a;,+Cpa,+ La, is called a prime direct lattice vector
(p.d.l. vector). If, further, either (i) £, >0, (ii)
{e>0,8, =0, or (ili) {3 > 0, & = &, = 0, then is
called a positive prime direct lattice vector (p.p.d.l.
vector). Similar definitions apply, mutatis mutandis,
to the reciprocal lattice.

Suppose that

€ = &1by+&by+65by (12)

is the p.p.r.L. vector in the direction of § of equation
(11), i.e. &, &, &3 are obtained from &, &, & by
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dividing them by their highest common factor and by
(=1) if either (i) & < 0, (il) & < 0 and &; = 0, or
(ili) &5 < 0 and &; = &; = 0. The equation (3) for the
lattice plane P,, P,, P, may now be written

r.§=N, (13)
where, since P, is a point on the plane and a;.b;=¢;,
N=P,.§
= Pyy§,+Ppés+ Pyséy (14)
= an integer.
If r = rja,+r.a,+75a3, then (13) may be written
Eiry+&eryt+&gry = N . (15)

It has now been shown that a lattice plane is rep-
resented by the vector equation (13), where § is a
p.p-r.l. vector and N is an integer, both being deter-
mined by P,, P,, P;. The converse result—that, for
any p.p.r.l. vector § and any integer ¥, equation (13)
represents a lattice plane—is not immediately ob-
vious. It is, in fact, an elementary result in the theory
of diophantine equations, but, as a proof does not
appear to be current in crystallographic literature, one
is now given.

Suppose that §, as in equation (12), is a p.p.r.l.
vector and that «;, &;, &5 are integers such that

d = oy +ogdytagdy (16)
is the smallest integer greater than zero of the form
orytagdytagds, (17)

where «,, «,, &5 are any integers. Now, by an elemen-
tary result of number theory, & = pd+q, where p, ¢
are integers and 0 < ¢ <d (see e.g. Birkhoff &
MacLane, 1947). So, by equation (16),

g = &—pd = (1—-px))§ —pxyby—pasés
which, being in the form (17), must be zero since
0 < ¢ < d and d is the smallest integer greater than
zero of the form (17). Thus &, = pd, and so d is a
factor of & : similarly it can be shown that d is also
a factor of &,, &. Hence d =1 since &, &,, & are
relatively prime. Thus there exists three integers
&1, 0g, &g such that

o &t osbatogls =1, (18)
and, if N is any integer,
(Nx )&+ (Nxy)ép+ (Nag)éy = N, (19)
s0 that there exists a direct lattice point
A= (Naj)a;+ (Najy)a,+ (Naxg)a, (20)

which is a point of the plane r.§ = N. Further, the
lattice vectors

= —&a,+&a;, v=—&a+&a, (21)
are such that
p.§=v.§=0, (22)
ie. (0, =&, &) and (—&,, &, 0) are solutions of
r.§ = b+t =0, (23)
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as can be seen by inspection. Hence the point

A =A+putqu, (24)

where p, ¢ are any numbers, lies on the plane r.§=N,
since, by (19) and (22),

AE=AE+pm.E+qw.§ =N.  (25)

If p, ¢ are both integral then A is the position vector
of a lattice point lying in the plane. The plane is seen
to contain a double infinity of lattice points, at least
three of which are not collinear since p and v are
generally not parallel: hence the plane is a lattice
plane.

This completes the proof of the following theorem:
Any lattice plane of the direct lattice can be represented
by the equation r.§ = N, where N is some integer and
§ is some positive prime reciprocal lattice vector; and
conversely, the equation r.§ = N, where N is any integer
and § is any p.p.r.l. vecior, represents such a lattice plane.
The theorem is also true, mutatis mutandis, for the
lattice planes of the reciprocal lattice.

Any plane r.n = ¢ is completely characterized by
the vector i} and the constant ¢, and may therefore
be denoted by (c; n) or (c; %, 75, 175). The above re-
sult shows that if N is an integer and § is a p.p.r.l
vector, (IV; §) represents a lattice plane and that any
lattice plane can be represented in this way.

The foot of the perpendicular from O to (N; §)
has position vector N§[€|-2, so that the seqrence of
lattice planes (N; §), N =0, +1, +2, ..., are parallel
and equally spaced a distance |§|-! apart, with (N ; §)
lying between (N—1; §) and (N+1;§).

If & = n, where » is a positive integer and § is
a p.p.rl. vector, then the planes of the sequence
(N;&), N =0, +1, £2, ..., are parallel and equally
spaced a distance |§'|~! = n~1|§|~! apart. Those planes
in this sequence for which N = ns, s = 0, +1, 2, ...,
are the corresponding lattice planes (s;§). Further-
more, the remaining planes of the sequence (&;¢’)
cannot be lattice planes since r.§ = N implies

ri&rytrede+réy = Nin,

which, since in this case N/x is a fraction and &,, &,, &,
are integers, can never be satisfied if r,, 7,, 7, all have
integral values. The planes of the sequence (N;§)
have the significance that they are the nodal planes
of the functions sin zn(r.§g).

Since the lattice plane (IV;§) cuts the lines drawn
from O parallel to a,, a,, a; at points distant Na,/&,,
Na,l&,, Nag/é; from O, the Miller indices relative to
a;, a,, a3 of the plane are proportional to &, &, &
and hence, by the theorem proved here, are propor-
tional to integers.
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